3.3.66 \(\int \frac {\cos (a+b x)}{(d \tan (a+b x))^{3/2}} \, dx\) [266]

Optimal. Leaf size=78 \[ -\frac {2 \cos (a+b x)}{b d \sqrt {d \tan (a+b x)}}-\frac {3 \cos (a+b x) E\left (\left .a-\frac {\pi }{4}+b x\right |2\right ) \sqrt {d \tan (a+b x)}}{b d^2 \sqrt {\sin (2 a+2 b x)}} \]

[Out]

-2*cos(b*x+a)/b/d/(d*tan(b*x+a))^(1/2)+3*cos(b*x+a)*(sin(a+1/4*Pi+b*x)^2)^(1/2)/sin(a+1/4*Pi+b*x)*EllipticE(co
s(a+1/4*Pi+b*x),2^(1/2))*(d*tan(b*x+a))^(1/2)/b/d^2/sin(2*b*x+2*a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 78, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.210, Rules used = {2689, 2695, 2652, 2719} \begin {gather*} -\frac {3 \cos (a+b x) E\left (\left .a+b x-\frac {\pi }{4}\right |2\right ) \sqrt {d \tan (a+b x)}}{b d^2 \sqrt {\sin (2 a+2 b x)}}-\frac {2 \cos (a+b x)}{b d \sqrt {d \tan (a+b x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Cos[a + b*x]/(d*Tan[a + b*x])^(3/2),x]

[Out]

(-2*Cos[a + b*x])/(b*d*Sqrt[d*Tan[a + b*x]]) - (3*Cos[a + b*x]*EllipticE[a - Pi/4 + b*x, 2]*Sqrt[d*Tan[a + b*x
]])/(b*d^2*Sqrt[Sin[2*a + 2*b*x]])

Rule 2652

Int[Sqrt[cos[(e_.) + (f_.)*(x_)]*(b_.)]*Sqrt[(a_.)*sin[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a*Sin[e +
f*x]]*(Sqrt[b*Cos[e + f*x]]/Sqrt[Sin[2*e + 2*f*x]]), Int[Sqrt[Sin[2*e + 2*f*x]], x], x] /; FreeQ[{a, b, e, f},
 x]

Rule 2689

Int[((a_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(a*Sec[e + f
*x])^m*((b*Tan[e + f*x])^(n + 1)/(b*f*(n + 1))), x] - Dist[(m + n + 1)/(b^2*(n + 1)), Int[(a*Sec[e + f*x])^m*(
b*Tan[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f, m}, x] && LtQ[n, -1] && IntegersQ[2*m, 2*n]

Rule 2695

Int[Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]]/sec[(e_.) + (f_.)*(x_)], x_Symbol] :> Dist[Sqrt[Cos[e + f*x]]*(Sqrt[b*
Tan[e + f*x]]/Sqrt[Sin[e + f*x]]), Int[Sqrt[Cos[e + f*x]]*Sqrt[Sin[e + f*x]], x], x] /; FreeQ[{b, e, f}, x]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin {align*} \int \frac {\cos (a+b x)}{(d \tan (a+b x))^{3/2}} \, dx &=-\frac {2 \cos (a+b x)}{b d \sqrt {d \tan (a+b x)}}-\frac {3 \int \cos (a+b x) \sqrt {d \tan (a+b x)} \, dx}{d^2}\\ &=-\frac {2 \cos (a+b x)}{b d \sqrt {d \tan (a+b x)}}-\frac {\left (3 \sqrt {\cos (a+b x)} \sqrt {d \tan (a+b x)}\right ) \int \sqrt {\cos (a+b x)} \sqrt {\sin (a+b x)} \, dx}{d^2 \sqrt {\sin (a+b x)}}\\ &=-\frac {2 \cos (a+b x)}{b d \sqrt {d \tan (a+b x)}}-\frac {\left (3 \cos (a+b x) \sqrt {d \tan (a+b x)}\right ) \int \sqrt {\sin (2 a+2 b x)} \, dx}{d^2 \sqrt {\sin (2 a+2 b x)}}\\ &=-\frac {2 \cos (a+b x)}{b d \sqrt {d \tan (a+b x)}}-\frac {3 \cos (a+b x) E\left (\left .a-\frac {\pi }{4}+b x\right |2\right ) \sqrt {d \tan (a+b x)}}{b d^2 \sqrt {\sin (2 a+2 b x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 0.44, size = 66, normalized size = 0.85 \begin {gather*} -\frac {2 \sin (a+b x) \left (1+\, _2F_1\left (\frac {3}{4},\frac {3}{2};\frac {7}{4};-\tan ^2(a+b x)\right ) \sqrt {\sec ^2(a+b x)} \tan ^2(a+b x)\right )}{b (d \tan (a+b x))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Cos[a + b*x]/(d*Tan[a + b*x])^(3/2),x]

[Out]

(-2*Sin[a + b*x]*(1 + Hypergeometric2F1[3/4, 3/2, 7/4, -Tan[a + b*x]^2]*Sqrt[Sec[a + b*x]^2]*Tan[a + b*x]^2))/
(b*(d*Tan[a + b*x])^(3/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(508\) vs. \(2(97)=194\).
time = 0.26, size = 509, normalized size = 6.53

method result size
default \(\frac {\left (6 \sqrt {\frac {\cos \left (b x +a \right )-1+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {-1+\cos \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \EllipticE \left (\sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}, \frac {\sqrt {2}}{2}\right ) \sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \cos \left (b x +a \right )-3 \sqrt {\frac {\cos \left (b x +a \right )-1+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {-1+\cos \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \EllipticF \left (\sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}, \frac {\sqrt {2}}{2}\right ) \cos \left (b x +a \right )+6 \sqrt {\frac {\cos \left (b x +a \right )-1+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {-1+\cos \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \EllipticE \left (\sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}, \frac {\sqrt {2}}{2}\right ) \sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}-3 \sqrt {\frac {\cos \left (b x +a \right )-1+\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \sqrt {\frac {-1+\cos \left (b x +a \right )}{\sin \left (b x +a \right )}}\, \EllipticF \left (\sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}, \frac {\sqrt {2}}{2}\right ) \sqrt {-\frac {\cos \left (b x +a \right )-1-\sin \left (b x +a \right )}{\sin \left (b x +a \right )}}+\left (\cos ^{2}\left (b x +a \right )\right ) \sqrt {2}-3 \cos \left (b x +a \right ) \sqrt {2}\right ) \sin \left (b x +a \right ) \sqrt {2}}{2 b \cos \left (b x +a \right )^{2} \left (\frac {d \sin \left (b x +a \right )}{\cos \left (b x +a \right )}\right )^{\frac {3}{2}}}\) \(509\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(b*x+a)/(d*tan(b*x+a))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/2/b*(6*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/2)*((-1+cos(b*x+a))/sin(b*x+a))^(1/2)*EllipticE((-(cos(b*x+
a)-1-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))*(-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2)*cos(b*x+a)-3*((c
os(b*x+a)-1+sin(b*x+a))/sin(b*x+a))^(1/2)*((-1+cos(b*x+a))/sin(b*x+a))^(1/2)*(-(cos(b*x+a)-1-sin(b*x+a))/sin(b
*x+a))^(1/2)*EllipticF((-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))*cos(b*x+a)+6*((cos(b*x+a)-1+
sin(b*x+a))/sin(b*x+a))^(1/2)*((-1+cos(b*x+a))/sin(b*x+a))^(1/2)*EllipticE((-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x
+a))^(1/2),1/2*2^(1/2))*(-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2)-3*((cos(b*x+a)-1+sin(b*x+a))/sin(b*x+a))
^(1/2)*((-1+cos(b*x+a))/sin(b*x+a))^(1/2)*EllipticF((-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2),1/2*2^(1/2))
*(-(cos(b*x+a)-1-sin(b*x+a))/sin(b*x+a))^(1/2)+cos(b*x+a)^2*2^(1/2)-3*cos(b*x+a)*2^(1/2))*sin(b*x+a)/cos(b*x+a
)^2/(d*sin(b*x+a)/cos(b*x+a))^(3/2)*2^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)/(d*tan(b*x+a))^(3/2),x, algorithm="maxima")

[Out]

integrate(cos(b*x + a)/(d*tan(b*x + a))^(3/2), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)/(d*tan(b*x+a))^(3/2),x, algorithm="fricas")

[Out]

integral(sqrt(d*tan(b*x + a))*cos(b*x + a)/(d^2*tan(b*x + a)^2), x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\cos {\left (a + b x \right )}}{\left (d \tan {\left (a + b x \right )}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)/(d*tan(b*x+a))**(3/2),x)

[Out]

Integral(cos(a + b*x)/(d*tan(a + b*x))**(3/2), x)

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(b*x+a)/(d*tan(b*x+a))^(3/2),x, algorithm="giac")

[Out]

integrate(cos(b*x + a)/(d*tan(b*x + a))^(3/2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {\cos \left (a+b\,x\right )}{{\left (d\,\mathrm {tan}\left (a+b\,x\right )\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(a + b*x)/(d*tan(a + b*x))^(3/2),x)

[Out]

int(cos(a + b*x)/(d*tan(a + b*x))^(3/2), x)

________________________________________________________________________________________